

Feasibility analysis and optimization of new energy technologies for sustainable development

Submitted in fulfillment of the requirements of

Master of Engineering

in the Faculty of Engineering and the Built Environment at the Durban University of Technology

by

Hagreaves Kumba

2023

Supervisor: Dr. O A Olanrewaju _____ Date: ____

DECLARATION

By electronically submitting this thesis, I, Hagreaves Kumba, solemnly affirm that the entire content contained within is of my own creation. This dissertation does not incorporate external data, images, charts, or supplementary information except where it is explicitly recognized as being sourced from external contributors. Furthermore, I confirm that this dissertation has not been presented for any degree or examination at any other university.

Student name: Hagreaves Kumba

Student signed:

Date:..... 04/11/2023

Supervisor Dr. Oludolapo Akanni Olanrewaju

Supervisor Signature:

Date:.....04/11/2023

ACKNOWLEDGEMENT

The author wishes to express his acknowledgment and gratitude to all those who contributed support from the start to the end of the research.

First, I would like to thank my supervisor, Dr. Oludolapo Akanni Olanrewaju, for his exemplary leadership, advice, and unlimited support throughout my study. Thank you so much, Dr Oludolapo, for believing in me, giving me a chance, and assisting me in going to Europe as part of the Erasmus Exchange Programme; indeed, this route has changed my life in ways you can never imagine. Thank you so much.

I wish to extend my heartfelt appreciation to my mother for her unwavering support and for everything she has done to guide me through the challenging moments in life.

To my colleagues, Belinda, Joseph, and others, thank you so much for your assistance and support when I was down with personal issues.

Lastly, the international office and the industrial engineering department provide the necessary support during registration and all activities. Kudos! I love you guys.

TABLE OF CONTENTS

DECL	_ARATION	2
CHAF	PTER 1 :INTRODUCTION	. 12
1.0	Introduction	. 12
1.1	Background of the Problem	. 13
1.2	Problem Statement	. 20
1.3	Aim	. 21
1.4	Objectives	. 21
1.5	Alignment of research objectives and research activities	. 21
1.6	Methodology	. 23
1.7	Rationale	. 23
1.8	Organization of the Thesis	. 24
1.9	Conclusion	. 26
CHAF	PTER 2 :LITERATURE REVIEW	. 27
2.0	Introduction	. 27
2.1	South Africa Energy Situation Overview	. 28
2.2	Environmental and health impacts of coal-fired power generation	า 30
2.	2.1 Energy Insights-South Africa	. 32
2.3	Government policies regarding Renewable Energy in South Af 36	rica
2.	3.1 White Paper on Renewable Energy (1998-2003)	. 36
2.	3.2 The Integrated Resource Plan (IRP)	. 37
2.4	Feasibility analysis of new energy technologies in South Africa	. 40
2.5	Optimization of new energy technologies in South Africa	. 43
2.	5.1 Optimization of Renewable Energy	. 43
2.	5.2 Renewable energy technologies	. 47
2.6	Integration of Feasibility Analysis and Optimization:	. 47
2.7	Optimization of New Energy Technologies	. 48
2.	7.1 Solar potential assessment using PVSYST software	. 51

2.8	Analysis and Synthesis of Literature	52
2.9	Conclusion	53
CHAP	TER 3: METHODOLOGY	54
3.0	Introduction	54
3.1	The Research Design	55
3.2	Technology Selection and Design	57
3.2	2.1 Design Process	57
3.3	Site identification and climatic data	58
3.4	Designing the system	61
3.4	4.1 System Orientation	61
3.5	System Design	62
3.	5.1 PV Module:	62
3.	5.2 Inverter	65
3.	5.3 Horizon	68
3.6	Simulation scenarios	69
3.7	Conclusion	70
CHAP	TER 4 : RESULTS AND DISCUSSIONS	71
4.0	Introduction	71
4.1	Optimal Configuration of the System	72
4.2	Energy Production	74
4.2	2.1 Additional Considerations	78
4.3	Performance Ratio	79
4.4	System losses	82
4.5	Evaluation and Choosing the Best PV System	85
4.6	Economical And Environmental Analysis	87
4.7	Financial analysis	88
4.8	Environmental Analysis	96
4.9	Conclusion	100
CHAP	TER 5 : CONCLUSION AND RECOMMENDATIONS	101
5.0	Introduction	101

5.1	Conclusion	101
5.2	Recommendations	102
REFERENCES		105
APPF	APPENDIX	

List of Figures

Figure 1: Energy share in South Africa extracted from [15]	16
Figure 2: Renewable Energy in South Africa 2013-2021, extracted [23]	
Figure 3: The Energy Mix in South Africa, extracted from [27]	28
Figure 4: Module orientation and tilt angle settings on PVsyst	62
Figure 5 :Data set for the PV module selected	65
Figure 6: Selected inverter and its specifications	66
Figure 7: A simplified representation of the grid-connected photov (PV) system	
Figure 8: Energy production for Scenario A	75
Figure 9: Energy production for Scenarios B and C	76
Figure 10 : Normalised energy production for A	80
Figure 11 :PR for Scenario C	81
Figure 12: Loss diagram for Scenario A	83
Figure 13: Cumulative cash flow for the PV System	94
Figure 14:Income allocation from the project	95
Figure 15 : Carbon dioxide emission vs time	97
Figure 16: Carbon balance calculation for the system	98

List of tables

Table 1: Energy demand in South Africa, extracted from [14]	15
Table 2:Renewable energy capacity installed in 2022, extracted from [2	
Table 3: Summary of the study	26
Table 4: geographical site parameters for Onverwacht	58
Table 5: Average temperature in Lephalale	59
Table 6:Operating characteristics for the inverter (input)	67
Table 7: Operating characteristics for the inverter(output)	67
Table 8 :Configuration of the system	73
Table 9: The System performance	74
Table 10: comparison of the outputs from the PV Syst simulation	78
Table 11: Number of PV modules for the systems	86
Table 12 :Capital expenditure of the system	91
Table 13: Financing of the PV system	92
Table 14:Operating posts per year	92
Table 15 :Economic evaluation of the system	93
Table 16: Cumulative cash flow for the PV SystemError! Bookmark a defined.	not

ABSTRACT

Energy is essential for crucial development in Africa. The current electricity shortages or load shedding in South Africa show the country faces significant challenges in reaching positive economic growth. For industries to operate sustainably, an innovative mechanism must be tailored to solve the negative impacts of industrial energy use, particularly climate change. Even though fossil fuels generate the majority of produced electricity in South Africa, the country's potential for renewable energy sources is vast. In contrast, solar irradiance and wind offer considerable commercial potential.

New renewable energy resources are widely seen as a means to address the challenges of climate change and energy insecurity. They can be of crucial importance in developing a sustainable economy in the country. The study aims to show how renewable energy technologies can provide new economic opportunities, contribute to higher standards of living, and reduce the impacts of society on ecosystems, among other things. This thesis presents a feasibility analysis and optimization of new energy technologies by designing and simulating a grid-connected PV system for sustainable development.

The PVsyst software was used to simulate and optimize the PV system. The software was used to design and model the PV systems and to calculate the energy production, economic performance, and environmental impact. The researcher utilized simulation data to compare PV system performance in three scenarios and identify the optimal one.

Overall, the findings of this thesis suggest that grid-connected PV systems are a feasible and sustainable option to meet South Africa's energy needs. By implementing

the results and recommendations, the government, investors, and community can work together to develop and deploy a successful PV system that will benefit all.